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➢A well-known clustering method

➢3-cluster examples:

☺  

K-means
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➢Network = Graph = Matrix
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A 1 1 1

B 1 1

C 1

D 1 1

E 1

F 1 1 1

G 1

H 1 1

I 1 1 1

J 1 1

Spectral Clustering
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➢Normalized Cut algorithm (Shi & Malik 2000):
1. Choose k and similarity function s

2. Derive A from s, let W=I-D-1A, where I is the identity 
matrix and D is a diagonal square matrix Dii=Σj Aij

3. Find eigenvectors and corresponding eigenvalues of W

4. Pick the k eigenvectors of W with the 2nd to kth smallest 
corresponding eigenvalues as “significant” eigenvectors

5. Project the data points onto the space spanned by these 
vectors

6. Run k-means on the projected data points

D

Finding eigenvectors 
and eigenvalues of a 
matrix is very slow 
in general: O(n3)

Spectral Clustering
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dataset and 
normalized 
cut results

2nd smallest 
eigenvector 
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Spectral Clustering
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➢Things to consider:

• Choosing a similarity function

• Choosing the number of clusters k?

• Which eigenvectors should be considered “significant”?
• The top or bottom k is not always the best for k clusters, especially 

on noisy data (Li et al. 2007, Xiang & Gong 2008)

• Finding eigenvectors and eigenvalues of a matrix is 
very slow in general: O(n3)

• Construction and storage of, and operations on a dense 
similarity matrix could be expensive: O(n2)
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➢Can we find a low-dimensional embedding for 
clustering, as spectral clustering, but without 
calculating these eigenvectors?
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➢The power method, is a simple iterative method for 
finding the dominant eigenvector of a matrix:

➢W – a square matrix 𝑫−1𝑨

➢vt – the vector at iteration t; v0 is typically a random 
vector

➢c – a normalizing constant to avoid vt from getting too 
large or too small

➢Typically converges quickly, and is fairly efficient if W is 
a sparse matrix

tt cWvv 1
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➢Recall the power iteration update:
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λi - the ith largest 
eigenvalue of W

ci - the ith coefficient 
of v when projected 

onto the space 
spanned by the 

eigenvectors of W

ei – the eigenvector 
corresponding to λi
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Begins with a 
random vector

Ends with a piece-
wise constant vector!

Overall absolute distance between points 
decreases, here we show relative distance
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➢Group the ciλiei terms, and define pict(a,b) to be the 
absolute difference between elements in the vt, where a
and b corresponds to indices a and b on vt:
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Power Iteration Clustering
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➢Group the ciλiei terms, and define pict(a,b) to be the 
absolute difference between elements in the vt, where a
and b corresponds to indices a and b on vt:
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The first term is 0 
because the first 

(dominant) eigenvector 
is a constant vector

As t gets bigger, the 
last term goes to 0 

quickly

We are left with the 
term that “signals” the 
cluster corresponding 

to eigenvectors!
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➢The 2nd to kth eigenvectors of W=D-1A are roughly piece-
wise constant with respect to the underlying clusters, each 
separating a cluster from the rest of the data (Meila & Shi 
2001)

➢The linear combination of piece-wise constant 
vectors is also piece-wise constant!
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dataset and 
PIC results

vt

The Take-Away

To do clustering, we may not need 
all the information in a spectral 
embedding (e.g., distance between 
clusters in a k-dimension 
eigenspace); we just need the 
clusters to be separated in some 
space.
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Then:

Because they are raised 
to the power t, the 
eigenvalue ratios 

determines how fast v
converges to e1

At the beginning, v changes fast 
(“accelerating”) to converge 
locally due to “noise terms” 

(k+1…n) with small λ

When “noise terms” have gone to zero, v 
changes slowly (“constant speed”) because 
only larger λ terms (2…k) are left, where the 

eigenvalue ratios are close to 1
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Then:

Power iteration 
convergence depends 

on this term (could 
be very slow)

PIC convergence 
depends on this 

term (always fast)

➢So we can stop when the “acceleration” is nearly 
zero.
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➢A basic power iteration clustering algorithm:

Input: A row-normalized affinity matrix W and the number of clusters k
Output: Clusters C1, C2, …, Ck

1. Pick an initial vector v0

2. Repeat
• Set vt+1 ← Wvt

• Set δt+1 ← |vt+1 – vt|
• Increment t
• Stop when |δt – δt-1| ≈ 0

3. Use k-means to cluster points on vt and return clusters C1, C2, …, Ck

W can be swapped 
for other graph cut 
criteria or similarity 

function

Can be determined 
automatically at the 
end (e.g., G-means) 

since embedding 
does not require k

Different ways to pick 
v0 (random, node 

degree, exponential)

Better stopping 
condition? 

Suggested: entropy, 
mutual information, 

modularity, …

Use multiple vt’s
from different v0’s 

for multi-
dimensional 
embedding

Use other methods for final clustering 
(e.g., Gaussian mixture model)

Methods become fast and/or exact on a 
one-dimension embedding (e.g., k-means)!
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➢But…what if the dataset is large and the similarity 
matrix is dense? For example, a large document 
collection where each data point is a term vector?

➢Constructing, storing, and operating on an NxN
dense matrix is very inefficient in time and space.
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• Recall PIC’s update is

– vt = W * vt-1 = = D-1A * vt-1

– where D is the [diagonal] degree matrix: D=A*1

– Let F(i,k)=TFIDF weight of word wk in document vi

– Compute N(i,i)=||vi|| … and N(i,j)=0 for i!=j

– Don’t compute A = N-1FFTN-1

– Let D(i,i)= N-1FFTN-1*1 where 1 is an all-1’s vector

• Computed as D=N-1(F (FT (N-1*1))) for efficiency

– New update:

• vt = D-1A * vt-1 = D-1 N-1FFTN-1 *vt-1
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➢Example – cosine similarity:

NNFFDW T1

• Iteration update:

))))((((11 tTt NFFND vv
 

Construction: 
O(n)

Storage:
O(n)

Operation: 
O(n)
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➢The walk distribution r satisfies a simple equation:

rur dWd  )1(

Start 
node(s)

Transition 
matrix of the 

network

Restart 
probability

“Keep-going” probability 
(damping factor)

Equivalent to the 
well-known 

PageRank ranking 
if all nodes are 

start nodes! (u is 
uniform)
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𝒗 = 1 − 𝑑 𝑟 + 𝑑𝑃𝒗
𝑣 − 𝑑𝑃𝒗 = 1 − 𝑑 𝑟
𝐼 − 𝑑𝑃 𝒗 = 1 − 𝑑 𝑟

But the matrix inversion, however, is computationally 
infeasible if n is large



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室

However, we can approximate v iteratively 
with the power method:

𝑣𝑡+1 = 1 − 𝑑 𝑟 + 𝑑𝑃𝑣𝑡

Here, we show 𝑣𝑡 converges to 𝑣.

𝑣𝑡 = 1 − 𝑑 𝑟 + 𝑑𝑃𝑣𝑡−1

𝑣𝑡= 1 − 𝑑 𝑟 + 𝑑𝑃 1 − 𝑑 𝑟 + 𝑑𝑃𝑣𝑡−2

𝑣𝑡 = 1 − 𝑑 𝑟 + 𝑑𝑃( 1 − 𝑑 𝑟 + 𝑑𝑃 1 − 𝑑 𝑟 + 𝑑𝑃𝑣𝑡−3 )

…

𝑣𝑡 = (1 − 𝑑)σ𝑖=0
𝑡−1(𝑑𝑃)𝑖𝑟 + (𝑑𝑃)𝑡−1𝑣0

Given  lim
𝑡→∞

(𝑑𝑃)𝑡−1𝑣0 = 0 , lim
𝑡→∞

σ𝑖=0
𝑡−1(𝑑𝑃)𝑖= (𝐼 − 𝑑𝑃)−1

lim
𝑡→∞

𝑣𝑡 = (1 − 𝑑)(𝐼 − 𝑑𝑃)−1𝑟

= 𝑣
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• One robustness question for vanilla PIC as data size 
and complexity grow:

• How many (noisy) clusters can you fit in one 
dimension without them “colliding”?

Cluster signals 
cleanly separated

A little too close for 
comfort?

PIC-k
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➢Solution:

• Run PIC d times with different random starts and 
construct a d-dimension embedding

• Unlikely any pair of clusters collide on all d dimensions
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Though the low-dimensional embedding we find is a
linear combination of the dominant vectors of data,
But it also contains noise, which is of no use to the
clustering……

And this is exactly the motivation of FUSE (FUll Spectral
ClustEring)
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Problem: Statistically Independent Pseudo-eigenvectors.

Given a pseudo-eigenvector matrix V ∈ 𝑅𝑝×𝑛 generated
by running PI p times, find a demixing matrix M ∈ 𝑅𝑝×𝑝

such that E = MV and the sum of mutual information
between pairwise components of E is minimized, where E
∈ 𝑅𝑝×𝑛 is a resulting independent pseudo-eigenvector
matrix.

𝐽1 𝑀 ≔ minσ1≤𝑖,𝑗≤𝑝,𝑖≠𝑗 𝐼(𝑒𝑖 ; 𝑒𝑗)
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min 𝐼(𝑒𝑖; 𝑒𝑗)

subject to 𝐸 = 𝑀𝑉, 1 ≤ 𝑖, 𝑗 ≤ 𝑝, 𝑖 ≠ 𝑗

Now it comes to how to select k independent components. 
Since ICA is interested in searching for non-Gaussian 
directions, in which negentropy is minimized.

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝜇4
𝜎4

=
𝐸( 𝑋 − 𝜇 4)

(𝐸( 𝑋 − 𝜇 2))2
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we propose a novel method based on the deflation
technique to compute multiple orthogonal pseudo-
eigenvectors (orthogonality is used to avoid
redundancy)



DM
LESS IS MORE Data Mining Lab

数据挖掘实验室

Assuming that we have a matrix 𝐴𝑡−1 and its
eigenvector 𝑣𝑡, the Schur complement deflation creates
a new matrix 𝐴𝑡 , which is computed by the following
formula:

𝐴𝑡 = 𝐴𝑡−1 −
𝐴𝑡−1𝑣𝑡𝑣𝑡

𝑇𝐴𝑡−1

𝑣𝑡
𝑇𝐴𝑡−1𝑣𝑡

DPIC (Deflation-PIC)
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The pseudo-eigenvectors produced by our algorithm are 
mutually orthogonal.

From the Schur equation on the lth loop of algorithm, 
we obtain

𝑊𝑙 = 𝑊𝑙−1 −
𝑊𝑙−1𝑣𝑙𝑣𝑙

𝑇𝑊𝑙−1

𝑣𝑙
𝑇𝑊𝑙−1𝑣𝑙

We multiply both sides with 𝑣𝑙,

𝑊𝑙𝑣𝑙 = 𝑊𝑙−1𝑣𝑙 −
𝑊𝑙−1𝑣𝑙𝑣𝑙

𝑇𝑊𝑙−1

𝑣𝑙
𝑇𝑊𝑙−1𝑣𝑙

= 0

DPIC (Deflation-PIC)
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From the Schur equation on the 𝑙 + 1 𝑡ℎ loop

𝑊𝑙+1 = 𝑊𝑙 −
𝑊𝑙𝑣𝑙+1𝑣𝑙+1

𝑇 𝑊𝑙

𝑣𝑙+1
𝑇 𝑊𝑙𝑣𝑙+1

We multiply both sides with 𝑣𝑙,

𝑊𝑙+1𝑣𝑙 = 𝑊𝑙𝑣𝑙 −
𝑊𝑙𝑣𝑙+1𝑣𝑙+1

𝑇 (𝑊𝑙𝑣𝑙)

𝑣𝑙+1
𝑇 𝑊𝑙𝑣𝑙+1

= 0      
In the same manner, we can prove that 

∀𝑠 ≥ 𝑙 + 1,𝑊𝑠−1𝑣𝑙 = 0

DPIC (Deflation-PIC)
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So we can obtain

𝑣𝑙
𝑇𝑣𝑠 = (𝑣𝑙

𝑇𝑊𝑠−1
𝑇 )(𝑊𝑠−1)

𝑡−1𝑣0 = 0

In sum, the DPIC’s pseudo-eigenvectors are mutually 
orthogonal:

𝑣𝑙
𝑇𝑣𝑠 = 0

DPIC (Deflation-PIC)
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Questions?



Thanks
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