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K-means

HIRBRTNE

» A well-known clustering method

» 3-cluster examples:
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Spectral Clustering @ —
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» Network = Graph = Matrix
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Spectral Clustering @wmmﬁ
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: : m Finding eigenvectors
»Normalized Cut algorithm (Shi SESS P

1. Choose k and similarity function JESEEEREETEFS ry slow

2. Derive A from s, let W=[-D-14 in general: O(n3)
matrix and D is a diagong I

3. Find eigenvectors angforresponding eigenvalues of W

4. Pick the k eigenvéctors of W with the 2™ to k' smallest
corresponding eigenvalues as “significant” eigenvectors

5. Project the data points onto the space spanned by these
vectors

6. Run k-means on the projected data points




Spectral Clustering

dataset and
normalized
cut results
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Spectral Clustering @ ——
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» Things to consider:

Choosing a similarity function
Choosing the number of clusters k?

Which eigenvectors should be considered “significant”?

The top or bottom k is not always the best for & clusters, especially
on noisy data (Li et al. 2007, Xiang & Gong 2008)

Finding eigenvectors and eigenvalues of a matrix is
very slow in general: O(717)

Construction and storage of, and operations on a dense
similarity matrix could be expensive: O(n?)
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Power Iteration @ I

» The power method, is a simple iterative method for
finding the dominant eigenvector of a matrix:

V'H—l _ CWV'[

» W — a square matrix D14

» v — the vector at iteration f; v is typically a random
vector

» ¢ —anormalizing constant to avoid ¢’ from getting too
large or too small

» Typically converges quickly, and is fairly efficient if 1V is
a sparse matrix
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Power Iteration Clustering @ —
\&J/

» Recall the power iteration update:

=Wy e, — the eigenvector
¢, - the it" coefficient —\\ 2yt2 corresponding to A,
of v when projected
onto the space
spanned by the
eigenvectors of W —\W ty°

t t t
=cWe +cWe, +...+cW'e,

+..+C Ae
A - the ith largest e

eigenvalue of W
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Begins with a
random vector
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Ends with a piece-

|
(e) t =100, e = 0.003 (f) t = 200,
wise constant vector!

Overall absolute distance between points

decreases, here we show relative distance
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Power Iteration Clustering @;ﬁmgm

» Group the ¢,/ ¢, terms, and define pic'(a,b) to be the
absolute difference between elements in the v/, where #
and b corresponds to indices 7 and b on '

pic'(a, b) =

[el(a) - e1<b)]c1/1§ + Zk: [ej(c”i> — el-(b)]cj/li. + i [ej(a) — ej.(b)]cj/‘ti.

J=k+1
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Power Iteration Clustering @wﬁgmﬁ
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» Group the ¢,/ ¢, terms, and define pic(a,b) to be the
absolute difference between elements in the v/, where #
and b corresponds to indices 7 and U on 0"

pic'(a,b) =

le,(a C A + Zk: (@) —e; (D) [ 4 + _Mﬁz

The first term is O We are left with the
because the first term that “signals” the

As t gets bigger, the
last term goes to O
quickly

(dominant) eigenvector cluster corresponding
is a constant vector to eigenvectors!
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» The 2" to k' eigenvectors of W=D1A are roughly piece-
wise constant with respect to the underlying clusters, each
separating a cluster from the rest of the data (Meila & Shi
2001)
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dataset and
PIC results
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The Take-Away

To do clustering, we may not need
all the information in a spectral

embedding (e.qg., distance between
clusters in a k-dimension
eigenspace); we just need the
clusters to be separated in some
space.
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When to Sto f \ A TS
P % .

At the beginning, v changes fast
(“accelerating”) to converge

locally due to “noise terms” + +C ﬂt e

(k+1...n) with small A nN“"n~n

Because they are raised
to the power t, the
eigenvalue ratios
determines how fast v
converges to e,

When “noise terms” have gone to zero, v
changes slowly (“constant speed”) because
only larger A terms (2...k) are left, where the

eigenvalue ratios are close to 1



When to Stop N
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PIC convergence
depends on this
term (always fast) KM

Power iteration

convergence depends
on this term (could

e +C
be very slow) K

7\

» S0 we can stop when the “acceleration” is nearly
Zero.
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PIC as a General Method @@amm
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Can be determined
automatically at the
end (e.g., G-means)
since embedding
does not require k

W can be swapped

for other graph cut

criteria or similarity
function

Different ways to pick
> A v? (random, node
degree, exponential)

Input: A row-nor d affinity matrix W and the number of clusters k
Output: Clusters C,,\( | ..., C,

1. Pick an initial vector v" Better stopping Use multiple v’s
2. Repeat condition? from different v%’s

e Setvitl & Wyt Suggested: entropy, for multi-
mutual information, dimensional
e Set &' & vt vt

modularity;, ... embedding
* |ncrementt

« Stopwhen |6'—6"| =0
3. Use k-means to cluster points on v* and return clusters C,, C,, ..., C,

one-dimension embedding (e.g., k-means)!

Use other methods for final clustering Methods become fast and/or exact on a
(e.g., Gaussian mixture model) l
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Large Scale Considerations @ —

»But...what if the dataset is large and the similarity
matrix is dense? For example, a large document
collection where each data point is a term vector?

» Constructing, storing, and operating on an NxN
dense matrix is very inefficient in time and space.
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* Recall PIC’s update is
— yvi=\W *ytl==D1A * yt1
— where D is the [diagonal] degree matrix: D=A*1
— Let F(i,k)=TFIDF weight of word w, in document v,
— Compute N(i,i)=] |vi] | ... and N(i,j)=0 for i!=]
— Don’t compute A = NIFF'N-!
— Let D(i,i)= N''FF'N-1*1 where 1 is an all-1’s vector

« Computed as D=N-LF (FT (N-1*1))) for efficiency

— New update:
o vt = D1A * yt-1 = D1 N-IFFTN-1 #yt-1
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» Example — cosine similarity:

Construction: Storage: Operation:

O(n) O(n) O(n)

* |teration C

v = DN (F(FT (NV')
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Random Walk with Restart @@aﬁmm
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» The walk distribution r satisfies a simple equation:

Transition
matrix of the

Equivalent to the
well-known
PageRank ranking
if all nodes are I = (1— d)u + dWF
start nodes! (u is
uniform)

network

Restart “Keep-going” probability
probability (damping factor)
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v=(1-d)r +dPv
v—dPv=(1-d)r
(Il —dP)v=(1-d)r

But the matrix inversion, however, is computationally
infeasible if n is large
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However, we can approximate v iteratively u
with the power method:

vl = (1 - d)r +dpPvt

Here, we show v' converges to v.

vt=(01-d)r+dPvt?
vi=(1—-d)r+dP((1—d)r+dPv?)
vi=(1-d)r+dP((1—-d)r+dP((1-d)r+dPvt3))

vt = (1 —d) Xz (dP)ir + (dP)t O
Given lim (dP)*"'v° = 0, lim B{Z3(dP)'= (I — dP)™

t—o0
lim vt = (1 —-d)(I —dP) 1r

t—oo

4
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*  One robustness question for vanilla PIC as data size
and complexity grow:

*  How many (noisy) clusters can you fit in one
dimension without them “colliding”?
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Cluster signals A little too close for
cleanly separated comfort?
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Multi-Dimensional PIC @m@mm
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» Solution:

* Run PIC d times with different random starts and
construct a d-dimension embedding

* Unlikely any pair of clusters collide on all 4 dimensions
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Though the low-dimensional embedding we find is a
linear combination of the dominant vectors of data,

But it also contains noise, which is of no use to the
clustering......

And this is exactly the motivation of FUSE (FUIl Spectral
ClustEring)
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Problem: Statistically Independent Pseudo-eigenvectors.

Given a pseudo-eigenvector matrix V. € RP*" generated
by running PI p times, find a demixing matrix M & RP*P
such that E = MV and the sum of mutual information
between pairwise components of E is minimized, where E
€ RP*™ is a resulting independent pseudo-eigenvector
matrix.

J1(M) = min lei,jSp,i;tj I(e;; ej)
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min I(el-; e])
subjectto E = MV, 1 <1i,j <p,i #j

Now it comes to how to select k independent components.
Since ICA is interested in searching for non-Gaussian
directions, in which negentropy is minimized.

E((X —u)*
Kurtosiszﬂ— (( M))

ot (E((X — w)?2))?
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we propose a hovel method based on the deflation
technigue to compute multiple orthogonal pseudo-

eigenvectors (orthogonality is used to avoid
redundancy)
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Assuming that we have a matrix A;,_; and its
eigenvector v, the Schur complement deflation creates

a new matrix A; , which is computed by the following
formula:

T
A1V Ve Apq

T
Vi A1 V¢
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DPIC (Deflation-PIC) @ —
&7/

Algorithm Deflation-based Power Iteration Clustering
(DPIC)

Input: Normalized Affinity Matrix W.

Wo=W.

repeat

v; = Powerlteration(W;_1). //Power iteration: find v
from W;_;
Wi_1vivl Wiy
Wy =W,_ — *’
! (= ‘r’;T Wi—1vi
fect of vi on Wj_
Increase .

. IIDeflation: remove the ef-

until / > &
Use K-Means on pseudo-eigenvectors vy, va, ..., Vk.
Output: Clusters Cy, Co, ..., Ck.
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The pseudo-eigenvectors produced by our algorithm are
mutually orthogonal.

From the Schur equation on the Ith loop of algorithm,
we obtain
Wl—lvlvlTWl—l
v Wi_1v
We multiply both sides with vy,
W,_vv] Wiy _

Wy=W_;—

Wy, = W,_qv; —

0

T
v; Wi_1v;




DPIC (Deflation-PIC) @ —
&7/

Data Mining Lab

From the Schur equation on the (I + 1)th loop

T
Wivi 1041 W
W,., =W, —
[+1 [ T W,
Vit1WiVi4+1
We multiply both sides with vy,
T
" _w Wivi1vi41 (W)
1+1V; = Wiv — T W
Vip1iWiVi41

=0

In the same manner, we can prove that
Vs=>1l+1,W._iv; =0
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So we can obtain
T.. _ ¢..TiasT - _
vl Vg = (vl Ws—l)(Ws—l)t 1170 =0

In sum, the DPIC’s pseudo-eigenvectors are mutually
orthogonal:

/v, =0
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Questions?

/.




Thanks
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